

NAVAL OCEANOGRAPHIC OFFICE MAJOR SHARED RESOURCE CENTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

openmp-1

OpenMP
Parallel Directives for Fortran

NAVAL OCEANOGRAPHIC OFFICE MAJOR SHARED RESOURCE CENTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

openmp-2

OpenMP and Directives
OpenMP is a parallel programming system based on Fortran
directives

Directives are special comments that are inserted into the source
code to control parallel execution on a shared-memory machine.

All directives begin with the !OMP, COMP or *$OMP sentinel.
To simplify things and avoid problems associated with the Fortran
free and fixed source forms, use the !$OMP sentinel starting in
column 1.

Example directives include:
!$OMP parallel
!$OMP do parallel
!$OMP end parallel

NAVAL OCEANOGRAPHIC OFFICE MAJOR SHARED RESOURCE CENTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

openmp-3

A Simple Example - Parallel Loop

!$OMP PARALLEL DO
do i=1,128

b(i) = a(i) + c(i)
enddo

!$OMP END PARALLEL DO

The first directive specifies that the loop immediately following
should be executed in parallel. The second directive specifies the
end of the parallel section.

For codes that spend the majority of their time executing the
content of simple loops, the PARALLEL DO directive can result
in significant parallel performance.

NAVAL OCEANOGRAPHIC OFFICE MAJOR SHARED RESOURCE CENTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

openmp-4

Distribution of work - SCHEDULE Clause

The division of work among CPUs can be controlled with
the SCHEDULE clause. For example

!$OMP PARALLEL DO SCHEDULE(STATIC)
Iterations divided among the CPUs in contiguous chunks

!$OMP PARALLEL DO SCHEDULE(STATIC, N)
Iterations divided round-robin fashion in chunks of size N

!$OMP PARALLEL DO SCHEDULE(DYNAMIC,N)
Iterations handed out in chunks of size N as CPUs become

available

NAVAL OCEANOGRAPHIC OFFICE MAJOR SHARED RESOURCE CENTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

openmp-5

Example - SCHEDULE(STATIC)

CPU2:do i=65,96
 a(i)=b(i)+c(i)
enddo

CPU3:do i=97,128
 a(i)=b(i)+c(i)
enddo

CPU0:do i=1,32
 a(i)=b(i)+c(i)
enddo

CPU1:do i=3,64
 a(i)=b(i)+ c(i)
enddo

NAVAL OCEANOGRAPHIC OFFICE MAJOR SHARED RESOURCE CENTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

openmp-6

Example - SCHEDULE(STATIC,16)
CPU0:do i=1,16

 a(i)=b(i)+c(i)
enddo
do i=65,80
 a(i)=b(i)+c(i)
enddo

CPU1:do i=17,32
 a(i)=b(i)+c(i)
enddo
do i=81,96
 a(i)=b(i)+c(i)
enddo

CPU2:do i=33, 48
 a(i)=b(i)+c(i)
enddo
do i=97,112
 a(i)=b(i)+c(i)
enddo

CPU3:do i=49,64
 a(i)=b(i)+c(i)
enddo
do i=113,128
 a(i)=b(i)+c(i)
enddo

NAVAL OCEANOGRAPHIC OFFICE MAJOR SHARED RESOURCE CENTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

openmp-7

PRIVATE and SHARED Data
SHARED - variable is shared by all processors
PRIVATE - each processor has a private copy of a variable

In the previous example of a simple parallel loop, we relied on the
OpenMP defaults. Explicitly, the loop would be written as

!$OMP PARALLEL DO SHARED(A,B,C,N) PRIVATE(I)
do I=1,N
B(I) = A(I) + C(I)
enddo
!$OMP END PARALLEL DO

All CPUs have access to the same storage area for A, B, C and N,
but each loop needs its own private value of the loop index I.

NAVAL OCEANOGRAPHIC OFFICE MAJOR SHARED RESOURCE CENTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

openmp-8

PRIVATE Data Example

In the following loop, each processor needs its own private copy of
the variable TEMP. If TEMP were shared, the result would be
unpredictable since multiple processors would be writing to the
same memory location.

!$OMP PARALLEL DO SHARED(A,B,C,N) PRIVATE(I,TEMP)
do I=1,N
TEMP = A(I)/B(I)
C(I) = TEMP + 1.0/TEMP
enddo
!$OMP END PARALLEL DO

NAVAL OCEANOGRAPHIC OFFICE MAJOR SHARED RESOURCE CENTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

openmp-9

REDUCTION variables
Variables that are used in collective operations over the elements
of an array can be labeled as REDUCTION variables.

ASUM = 0.0
APROD = 1.0
!$OMP PARALLEL DO REDUCTION(+:ASUM)
REDUCTION(*:APROD)
do I=1,n

ASUM = ASUM + A(I)
APROD = APROD * A(I)

enddo
!$OMP END PARALLEL DO

Each processor has its own copy of ASUM and APROD. After the
parallel work is finished, the master processor collects the values
generated by each processor and performs global reduction.

NAVAL OCEANOGRAPHIC OFFICE MAJOR SHARED RESOURCE CENTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

openmp-10

The !$OMP PARALLEL directive can be used to mark entire regions
as parallel. The following two examples are equivalent

!$OMP PARALLEL
!$OMP DO
do i=1,n
a(i)=b(i)+c(i)
enddo
!$OMP DO
do i=1,n
x(i)=y(i)+z(i)
enddo
!$OMP END PARALLEL

!$OMP PARALLEL DO
do i=1,n
a(i)=b(i)+c(i)
enddo
!$OMP END PARALLEL DO
!$OMP PARALLEL DO
do i=1,n
x(i)=y(i)+z(i)
enddo
!$OMP END PARALLEL DO

NAVAL OCEANOGRAPHIC OFFICE MAJOR SHARED RESOURCE CENTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

openmp-11

A more practical example using
!$OMP PARALLEL

When a parallel region is
exited, a barrier is implied -
all threads must reach the

barrier before any can
proceed. By using the

NOWAIT clause at the end
of each loop inside the

parallel region, an
unnecessary

synchronization of threads
can be avoided.

!$OMP PARALLEL
!$OMP DO
do i=1,n
 a(i)=b(i)+c(i)
enddo
!$OMP END DO NOWAIT
!$OMP DO
do i=1,n
 x(i)=y(i)+z(i)
enddo
!$OMP END DO NOWAIT
!$OMP END PARALLEL

NAVAL OCEANOGRAPHIC OFFICE MAJOR SHARED RESOURCE CENTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

openmp-12

A note on OpenMP parallel loop directives

OpenMP provides two sets of directives for specifying a
parallel loop. Their appropriate use is detailed below

!$OMP DO / !$OMP END DO
Used inside parallel regions marked with the
PARALLEL/END PARALLEL directives

!$OMP PARALLEL DO / !$OMP END PARALLEL DO
Used to mark isolated loops outside of parallel regions

NAVAL OCEANOGRAPHIC OFFICE MAJOR SHARED RESOURCE CENTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

openmp-13

Critical Regions

Certain parallel
programs may require
that each processor
execute a section of
code, where it is critical
that only one processor
execute the code section
at a time. These regions
can be marked with the
CRITICAL / END
CRITICAL directives.

!$OMP PARALLEL SHARED(X,Y)
…
!$OMP CRITICAL (SECTION1)
call subroutine update(x)
!$OMP END CRITICAL (SECTION1)
!$OMP CRITICAL (SECTION2)
call subroutine update(y)
!$OMP END CRITICAL (SECTION2)
…
!$OMP END PARALLEL

NAVAL OCEANOGRAPHIC OFFICE MAJOR SHARED RESOURCE CENTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

openmp-14

More about OpenMP

Other important features of Open MP
•BARRIER - all threads must reach barrier before
proceeding

•ORDERED - order of execution matches serial code

•The OpenMP runtime library - returns information
regarding threads

For more complete details see the OpenMP web site at
http://www.openmp.org

NAVAL OCEANOGRAPHIC OFFICE MAJOR SHARED RESOURCE CENTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

openmp-15

OpenMP Runtimes

no_omp_fft.f 126.9 130.3
no_omp_fft.f -O3 110.1 111.8
no_omp_fft.f -task3 110.2 110.4

omp_fft.f none 123.6 38.5
omp_fft.f -O3 111.5 34.4

source options CPU Wallclock
none

2d optics program kernel (20 * 1024x1024 ffts with convolution)
Run on 4 processors of Cray T90 with compiler version 3.1.0.0
Run with and without OpenMP directives

NAVAL OCEANOGRAPHIC OFFICE MAJOR SHARED RESOURCE CENTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

openmp-16

Absoft Corporation
Digital Equipment Corporation
Edinburgh Portable Compilers
GENIAS Software GmBH
Hewlett-Packard Company
Intel Corporation
International Business Machines (IBM)
Kuck & Associates, Inc. (KAI)
Myrias Computer Technologies, Inc.
Silicon Graphics, Inc. (including Cray Research)
Sun Microsystems, Inc.
The Portland Group, Inc. (PGI)

OpenMP Partners

